Cold Seeps

Gulf of Mexico

We have several projects studying cold seeps in the Gulf of Mexico and collaborate with Dr. Ian MacDonald (Florida State Univeristy), Dr. Peter Girguis (Harvard Univeristy), Dr. Harry Roberts (Louisiana State University), Dr. Chuck Fisher (Penn State University), and Drs. Jim Brooks and Bernie Bernard (TDI-Brooks International LLC) on the Deep Slope Chemosynthetic Ecosystems Study. The Gulf of Mexico is a prolific hydrocarbon basin; dynamic patterns of sediment topography result from salt tectonics, generating basin and ridge type structures on the seafloor.


Researchers in the Joye Group quantify rates of microbial processes, like anaerobic oxidation of methane, methanogenesis, alkane oxidation, and sulfate reduction; study the controls on cold seep microbial metabolism; and use molecular ecological techniques to determine which microbes are involved in key biogeochemical processes. We have examined a suite of ancillary geochemical parameters in water, sediment, and vent gas samples (gases only), including nutrient concentrations, redox species (e.g., H2S, Fe2+, dissolved inorganic carbon, etc.), organic matter (e.g., DOC, volatile fatty acids), and dissolved gas (e.g., CH4, C2H6, C3H8, H2) concentrations.

Gulf of Mexico Study Sites

Most of our work on cold seeps is conducted in the Gulf of Mexico, along the Louisiana and Texas continental shelf and slope (500-3500m water depth; see GOM map above). We have worked at sites in Green Canyon (GC234, GC185, GC233, GC852, GC600, and GC415), in Mississippi Canyon (MC118, MC853, MC640), Atwater Valley (AT340), Garden Banks (GB 425), Walker Ridge (WR269), and Alaminos Canyon (AC601, AC818, AC645). Gas hydrate mounds (left) are abundant, and this portion of the Gulf of Mexico is a rich petroluem basin; oil and gas harvesting platforms (right) are common.


Sampling the Seafloor

To access cold seep habitats, we conduct research cruises using a mother ship (usually the R/V Seward Johnson II or the R/V Atlantis) and manned submersibles (the Johnson Sea Link (JSL) or ALVIN, which are operated by the Harbor Branch Oceanographic Institute and Woods Hole Oceanographic Institution (WHOI), respectively).  To sample Gulf of Mexico cold seeps, we have also used the ROV JASON, an unmanned remotely operated vehicle, which is also operated out of WHOI.

The ALVIN is launched from the R/V Atlantis. It can dive to depths up to 4000m, while the JSL can dive to only 1000m. We often work with the JSL on the upper slope and either the ALVIN or JASON on the deep slope.




Melitza Crespo-Medina (was Post Doctoral Researcher 2010 - 2013)

Joy Battles (MSc student)

Ryan Sibert (PhD student)

Marshall Bowles (received his PhD in 2011)

Beth Orcutt (PhD 2008, now a Senior Scientist at Bigelow)


Orcutt, B. N., A. Boetius, S. K. Lugo, I. R. MacDonald, V. Samarkin, and S. B. Joye, 2004. Life at the edge of methane ice:  methane and sulfur cycling in Gulf of Mexico gas hydrates. Chemical Geology, 205(3/4): 239-251.

Joye, S. B., A. Boetius, B. N. Orcutt, J. P. Montoya, H. N. Schulz, M. Erickson, and S. K. Lugo, 2004.  The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 205(3/4): 219-238.

Joye, S. B., I. R. MacDonald, J. P. Montoya, and M. Peccini, 2005.  Geophysical and geochemical signatures of Gulf of Mexico seafloor brines.  Biogeosciences, 2: 637-671.

Bailey, J. V., S. B. Joye, K. M. Kalanetra, B. E. Flood, and F. A. Corsetti, 2007. Evidence for giant sulfur bacteria in Neoproterozoic phosphorites. Nature, 445: 198-201.

Bailey, J. V., S. B. Joye, K. M. Kalanetra, B. E. Flood, and F. A. Corsetti, 2007. Palaeontology: Undressing and redressing Ediacaran embryos.  Nature 446, E10 - E11 (reply to a comment).

Kniemeyer, O., F. Musat, S. M. Sievert, K. Knittel, H. Wilkes, M. Blumenberg, W. Michaelis, A. Classen, C. Bolm, S. B. Joye, and F. Widdel, 2007. Anaerobic oxidation of propane and ethane by novel marine sulphate-reducing bacteria. Nature, 449: 898-902.

Roberts, H. H., C. Fisher, B. Bernard, J. Brooks, M. Bright, R. Carney, E. Cordes, S. Hourdez, J. Hunt, S. Joye, I. MacDonald, C. Morrison, K. Nelson, V. Samarkin, W. Shedd, E. Becker, M. Bernier, M. Bowles, L. Goehring, M. Kupehik, S. Lessard-Pilon, H. Niemann, C. Petersen, J. Petersen, J. Potter, and G. Telesnicki, 2007.  ALVIN Explores the Deep Northern Gulf of Mexico Slope. EOS Transactions of the American Geophysical Union, 88: 341-342.

Bailey, J. V., V. J. Orphan, S. B. Joye, and F. A. Corsetti, 2009. Chemotrophic microbial mats and their potential for preservation in the rock record. Astrobiology, 9: 843-859.

Orcutt, B. N., V. Samarkin, A. Boetius, M. Elvert, and S. B. Joye, 2005.  Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico methane seeps. Geochimica et Cosmochimica Acta, 69: 4267-4281.

Kalanetra, K. M., S. B. Joye, N. R. Sunseri, and D. C. Nelson, 2005.  Novel, large, vacuolate, nitrate-accumulating sulfur bacteria discovered in the Gulf of Mexico reproduce by reductive division in three dimensions.  Environmental Microbiology, 7(9): 1451-1460.

Niemann, H., M. Elvert, E. Damm, J. Gutt, B. Orcutt, I. Suck, G. Wendt, J. Wunderlich, S. B. Joye, K. Finster, and A. Boetius, 2005. Methane emission and consumption at a North Sea pockmark (Tommeliten area).  Biogeosciences, 2: 335-351.

Krüger, M., H. Wolters, M. Gehre, S. B. Joye, and H.-H. Richnow, 2008. Tracing the slow growth of anaerobic methane oxidizing communities by 15N-labeling techniques. FEMS Microbiology Ecology, 63(3): 401-411, doi: 10.1111/j.1574-6941.2007.00431.x.

Orcutt, B. N., V. Samarkin, A. Boetius and S. B. Joye, 2008. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.  Environmental Microbiology, 10(5): 1108-1117; doi: 10.1111/j.1462-2920.2007.01526.x.

House, C. H., V. O. Orphan, K. A. Turk, B. Thomas, A. Pernthaler, J. M. Vrentas and S. B. Joye, 2009. Extensive carbon isotopic heterogeneity among methane seep microbiota.  Environmental Microbiology, 11(7): 1632-1645.

Tavormina, P.L., W. Ussler, S.B. Joye, S. Giovannoni, and V.J. Orphan, 2010. Intergenic spacer length of particulate methane monooxygenases reveals distributions of microbial methane oxidizers in the mesopelagic ocean. The ISME Journal, doi:10.1038/ismej.2009.155.

Joye, S. B., M.W. Bowles, V.A. Samarkin, K.S. Hunter and H. Niemann, 2010. Biogeochemical signatures and microbial activity of different cold seep habitats along the Gulf of Mexico lower slope. Deep Sea Research, doi:10.1016/j.dsr2.2010.06.001.

Wankel, S.D., S. B. Joye, V.A. Samarkin, S. Shah, G. Friderich, J. Melas-Kryiazi, and P.R. Girguis, 2010. New constraints on diffusive methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool through the use of a deep sea in situ mass spectrometer. Deep Sea Research, doi:10.1016/j.dsr2.2010.05.009.

Orcutt, B.N., S. B. Joye, S. Kleindienst, K. Knittel, A. Ramette, A. Reitz, V. A. Samarkin, T. Truede, and A. Boetius, 2010. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution and activity in Gulf of Mexico cold seep sediments. Deep Sea Research, doi:10.1016/j.dsr2.2010.05.014.

Roberts, H.H., D. Feng, and S.B. Joye, 2010. Cold seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep Sea Research, doi:10.1016/j.dsr2.2010.09.003.

Bowles, M.W., V.A. Samarkin, and S.B. Joye, 2011. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnology and Oceanography: Methods, 9: 499-506.

Treude, T., L. Levin, C. Smith, and S.B. Joye, in press. Marine ecosystems associated with near surface methane gas hydrate. In United Nations Environmental Program GRID program, Methane Dynamics in Ocean Ecosystems: Past and Present.


NSF Biological Oceanography

DOI Minerals Management Service

American Chemical Society Petroleum Research Fund

Gas (Methane) Hydrates

Brine Seeps

Microbial Mats: Thiomargarita